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Preface

To understand the evolution of things, one must un-
derstand something about their history as well as the
environmental forces that had shaping influences upon
them. Information Foraging 'Theory evolved through
a series of fortuitous historical accidents, as well as a
number of enduring shaping forces. A critical event
was my move to the Palo Alto Rescarch Center
(PARC). Soon after I came to PARC at the beginning
of 1992, 1 became involved in trying to develop studies
and models around a set of projects that were collec-
tively called intelligent information access. This in-
cluded the novel information visualization systems
investigated in the User Interface Rescarch Area (see,
e.g., Card et al,, 1999) as well as the new techniques
for browsing and scarching being created in the
Quantitative Content Area (c.g., Rao ct al,, 1995). As
part of this effort, a group of us (including Stu Card,
Dan Russell, Mark Stefik, and John van Gigch from
California State University — Sacramento) were run-
ning some quick-and-dirty studies of people such as
business intelligence analysts and MBA students. Our

an

studies of people doing information-intensive work
started to give me some sense of the range of phe-
nomena that we would need to address. Our study
participants clearly were faced with massive volumes
of information, often under deadline conditions, and
making complex search decisions based on assess-
ments that were enveloped in a great deal of un-
certainty.

These information-intensive tasks seemed to be
different than the human-computer interaction tasks
that were being addressed by cognitive engineering
models in the early 1990s, or the science, math, and
programming tasks addressed by intelligent tutoring
systems of that same period. Such cognitive models
addressed tasks that tended to occur in task environ-
ments that (although large and complex) were well
defined by a circumscribed domain of possible goals,
elements of domain knowledge (e.g., about Lisp pro-
gramming, algebra, word processing), and potential
actions (e.g., in a formal language, or in a user inter-
face). In contrast, the behavior of people seeking
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information appeared to be largely shaped by the
structure or architecture of the content—the in-
formation environment—and only minimally shaped
by the user’s knowledge of user interface. In addition,
the structure of the information environment was
fundamentally probabilistic. Consequently, behavior
was also dominated by choices made in the face of
uncertainty and the continual evaluation of the ex-
pected costs and benefits of various actions in the in-
formation environment, in contrast to the near-certain
costs and benefits of actions taken in traditional cog-
nitive modeling domains of the time.

It was clear that it was going to be a challenge to
develop theories for information-intensive tasks. Mul-
ling about this issue, I was drawn to work in two areas in
which I had done some reading. The first was the work
in the late 1980s of John R. Anderson (e.g., Anderson,
1990), who was putting forth the argument that to un-
derstand mechanisms of the mind, one must first try to
figure out the environmental problems that it solves.
John developed the method of rational analysis and
applied this approach to memory, categorization, and
other areas of cognition with considerable success. |
wondered if the approach could be applicd to the
analysis of the information environment and how it
shapes information seeking behavior.” The second area
of interest was behavioral ecology (e.g., Smith, 1987),
which suggested that very diverse strategies adopted by
people could be systematically predicted from optimi-
zation analysis that focused first on scrutiny of the en-
vironment. This particular interest of mine originated
as an undergraduate at Trent University, where phy-
siological psychology included coverage of ethology
(the precursor to behavioral ecology) and anthropology
included what is known as cultural materialism (the
precursor to current evolutionary-ecological approaches
to anthropology). Working through the literature in
these areas, I was led to optimal foraging theory, and
particularly to the book by Stephens and Krebs (1986)
that is the source of the conventional models discussed
in chapter 2. I quite literally had an “ah-ha” expericnce
in the middle of a late-night conversation with Jacqui
LeBlancin which 11aid out the basic analogies between
information foraging and optimal foraging theory.

In July 1992, I wrote a working paper titled “Notes
on Adaptive Sense Making in Information Ecolo-
gies,” which discussed the possible application of
conventional foraging models and the core mathe-
matics of Stephens and Krebs to idealized informa-
tion foraging tasks. The working paper got two kinds

of reactions. The first was one of disbelief in the
analogy, for a variety of relatively good reasons (e.g.,
humans are not rational, information is not food).
The second was that the ideas were “audacious” (to
quote Jock Mackinlay). Fortunately, Stu Card (my
manager and colleague in the User Interface Re-
search Area) pushed me to pursue this approach, and
he has been my main sounding board for the devel-
opment of the theory over the years. By the fall of
1993, T had enough material to present a seminar at
the University of California— Berkeley called “Sense
Making in Complex Information Ecologies.”

In the decade that followed, the fruitfulness of In-
formation Foraging Theory was apparent from the way
that it could be used to bring messy data into crystal
clear focus. The first time this happened was in ap-
plication to the Scatter/Gather study presented in
chapter 6. Simple analyses of the logs of users inter-
acting with the system seemed to indicate that users
where behaving in a nonsystematic way in their allo-
cation of time or in their choices of interface actions.
‘The application of optimal foraging models resulted
in another of those “ah-ha” experiences in which
suddenly the data plots all fell neatly on lines pre-
dicted by theory. Like catching a perfect wave in
surfing, the feeling one gets from that moment when
one gains power over a small portion of the universe is
hard to recount without the skill of poetry (which I do
not have), and it is the reward that keeps you coming
back.
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Information Foraging Theory

Framework and Method

Knowledge is power.
— Sir Francis Bacon,
Meditationes Sacree.
De Heresibus (1597)

Modern mankind forages in a world awash in infor-
mation, of our own creation, that can be transformed
into knowledge that shapes and powers our engage-
ment with nature. This information environment has
coevolved with the epistemic drives and strategies
that are the essence of our adaptive toolkit. The result
of this coevolution is a staggering volume of content
that can be transmitted at the spced of light. This
wealth of information provides resources for adapting
to the problems posed by our increasingly complex
world. However, this information environment poses
itt. own complex problems that require adaptive
strategies for information foraging. This book is about
Information Foraging Theory, which aims to explain
and predict how people will best shape themselves for
their information environments and how information
environments can best be shaped for people.

Information Foraging Theory is driven by three
maxims attributable in spirit, if not direct quotation,
to Allen Newell’s (1990) program of Unified Theories
of Cognition:’

1. Good science responds to real phenomena or real
problems. Human psychology has evolved as an
adaptation to the real world. Information forag-
ing theory is concerned with understanding rep-
resentative problems posed by the real-world
information environment and adaptive cogni-
tive solutions to those problems.

2. Good science makes a difference. Information
Foraging Theory is intended to provide the
basis for application to the design and evalu-
ation of new technologies for human interac-
tion with information, such as better ways to
forage for information on the World Wide
Web.

3. Good science is in the details. 'The aim is to
produce working formal models for the anal-
ysis and prediction of observable behavior.

Like much of Newell’s work, the superficial ele-
gance and simplicity of these maxims unfurls into
complex sets of entailments. In this book 1 argue
that the best approach to studying real information
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foraging problems is to adopt methodological adap-
tationism, which directs our scientific attention to the
ultimate forces driving adaptation and to the proxi-
mate psychological mechanisms that are marshaled
to produce adaptive solutions. Thus, the methodol-
ogy of Information Foraging Theory is more akin to
the methodology of biology than that of physics, in
contrast with the historical bulk of experimental psy-
chology. To some extent, this choice of methodology
is a consequence of the success with which Informa-
tion Foraging Theory has been able to draw upon
metaphors, models, and techniques from optimal
foraging theory in biology (Stephens & Krebs, 1986).
The concern with application (Newell & Card, 1985)
drives the theory to be relevant to technological de-
sign and evaluation, which requires that models be
truly predictive a priori (even if approximately so)
rather than a “good fit” explanation of the data a pos-
teriori, as is the case with many current psychological
models. Being concerned with the details drives the
theory to marshal a variety of concepts, tools, and
techniques that allow us to build quantitative, pre-
dictive models that span many levels of interrelated
phenomena and interrclated levels of explanation.
This includes the techniques of task analysis through
state-space and problem-space representations, ratio-
nal analysis and optimization analysis of adaptive
solutions, and production system models of the cog-
nitive systems that implement those adaptive sol-
utions.

Audience

The intent of this book is to provide a comprehensive
presentation of Information Foraging Theory, the
details of empirical investigations of its predictions,
and applications of the theory to the engineering and
design of user interfaces. This book aims primarily at
an interdisciplinary audience with backgrounds and
interests in the basic and applied science aspects of
cognitive science, computer science, and the infor-
mation and library sciences. The theory and method-
ology have been developed by drawing upon work
on the rational analysis of cognition, computational
cognitive modeling, behavioral ecology, and micro-
economics. The crucible of empirical research that
has shaped Information Foraging Theory has been
application problems in human-information inter-
action, which is emerging as a new branch in the

field traditionally known as human-computer inter-
action. Although the emphasis of this book is on the-
ory and research, the insights and results are intended
to be relevant to the practitioner interested in a deeper
understanding of information-seeking bchavior and
guidance on new designs. Chapter 9 is devoted en-
tirely to practical applications of the theory.

By its nature, Information Foraging Theory in-
volves the use of technical material such as mathe-
matical models and computational models that may
not be familiar to a broad audience. Generally, the
technical aspects of the theory and models are pre-
sented along with succinct discussion of the key
concepts, insights, and principles that emerge from
the technical parts, along with illustrative examples,
metaphors, and graphical methods for understanding
the key points. The aim of this presentation is to pro-
vide intuitive understanding along with technical pre-
cision and insight.

Frameworks, Theories, and Models

Like other programs of research in the behavioral and
cognitive scicnces, Information Foraging Theory can
be discussed in terms of the underlying framework,
the theory itself, and the models that specify predic-
tions in specific situations. Frameworks are the gen-
eral pools of concepts, assumptions, claims, heuris-
tics, and so forth, that are drawn from to develop
theorics, as well the methods for using them to un-
derstand and predict the world. Often, frameworks
will overlap. For instance, information processing
psychology is a broad framework that assumes that
theories about human behavior can be constructed
out of information processing concepts, such as pro-
cesses that transduce physical sensations into sensory
information, elements storing various kinds of infor-
mation, and computational processes operating over
those elements. A related framework, connectionism,
shares these assumptions but makes additional ones
about the nature of information processing being
neuronlike. Although bold claims may be made by
frameworks, these are typically not testable in and of
themselves. For instance, whether the mind is mostly
a general purpose leaming machine or mostly a col-
lection of exquisitely evolved computational modules
are not testable claims in and of themselves.
Theories can be constructed within frameworks
by providing additional assumptions that allow one to
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mation, and computational processes operating over
those elements. A related framework, connectionism,
shares these assumptions but makes additional ones
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make predictions that can be falsified. Typically, this is
achieved by specifying a model for a specific situation
or class of situations that makes precise predictions
that can be fit to observation and measurement. For
instance, a model of information seeking on the Web
(SNIF-ACT) is presented in chapter 5 that predicts
the observed choice of Web links in given tasks. It
includes theoretical specifications of the information
processing model of the user, as well as assumptions
about the conditions under which it applies (e.g.,
English-speaking adults secking information about un-
familiar topics). The bulk of this book is about Infor-
mation Foraging Theory and specific models. 'The
aim of this introductory chapter is to provide an out
line of the underlying framework and methodology
in which Information Foraging Theory is embedded.
However, before presenting such abstractions, a simple
example is offered in order to illustrate the basic ele-
ments and approach of Information Foraging Theory.

llustration

'The basic approach of Information Foraging Theory
can be illustrated with a simple example that I hope
is familiar to many, involving the task of finding a
good, reasonably priced hotel using the World Wide
Web (Pemberton, 2003). A typical hotel Web site
(see figure 1.1) will allow a user to search for avail-
able hotels in some specified location (e.g., “Paris”)
and then allows the user to sort the results by the
hotel star rating (an indicator of quality) or by price
(but not both). The user must then click-select each
result to read it, because often the price, location, and
features summaries are inaccurate. Lamenting the
often poor quality of such hotel Web sites, Pem-
berton (2003) suggested that improved “usability is
about optimizing the time you take to achieve your
purpose, how well you achieve it, and the satisfaction
in doing it....How fast can you find the perfect
hotel?” This notion of usability is at the core of In-
formation Foraging Theory.

For illustration, consider the somewhat simplified
and idealized task of finding a low-priced, two-star
hotel in Paris.? This example shows (in much sim-
plified form) the key steps to developing a model of
information foraging: (a) a rational analysis of the task
and information environment that draws on optimal
foraging theory from biology and (b) a production
system model of the cognitive structure of task.

FRAMEWORK AND METHOD 5

Rational Analysis of the Task
and Information Environment

Figure 1.2 presents an analysis of results of search for
two-star Paris hotels that I conducted on a popular
hotel Web site. The Paris hotel descriptions and
prices were retumed as a vertical list presented over
several Web pages. I sorted the list by star rating and
went to the page that began to list two-star hotels. In
figure 1.2, the x-axis indicates the order of two-star
hotel listings in the search result list when sorted
by star rating, beginning at the first two-star hotel
through the last two-star hotel, and the y-axis indi-
cates price. Prices fluctuate as one proceeds down the
list of Paris hotels. As noted above, this particular
hotel Web site, like many others, does not allow the
user to sort by both quality (star rating) and price—
one must choose one or the other sorting. Assume a
rational (and perhaps somewhat boring) hotel shop-
per who was concerned only with being frugal and
slecping in a two-star hotel. If that shopper method-
ically scanned the two-star hotel listings, keeping
track of only the lowest priced hotel found so far, the
lowest price encountered would decrease as plotted
in figure 1.3. That is, the shopper would at first find a
relatively rapid decrease in lowest price, followed by
fewer improvements as the scan progressed. Figure
1.4 shows the savings attained (compared with the
very first hotel price found on the list) by continuing
to scan down the list. Figure 1.4 is a typical dimin-
ishing returns curve in which additional benefts
(returns) diminish as one invests more resources (in
this case, scan time).

A diminishing returns curve such as figure 1.4
implies that the expected value of continuing to scan
diminishes with each additional listing scanncd. If
the list of search results were very long—as is often
the case with the results produced by Web search
engines—there is usually a point at which the infor-
mation forager faces the decision of whether it is
worth the effort of continuing to search for a better
result than anything encountered so far. In the par-
ticular example plotted in figure 1.2, there were no
additional savings for the last 18 items scanned.
Figure 1.3 includes a plot of the expected minimum
price encountered as a function of scanning a search
result list, and figure 1.4 includes a plot of the ex-
pected savings as a function of scanning. These ex-
pectations were computed assuming that observed
hotel prices in figure 1.2 come from a standard



31354_C01_UNCORRECTED_PROOF.3d_6_01-26-07

6 INFORMATION FORAGING THEORY

£} hotels.com - Search Results - Mozitla Firefox
fle Edt Vew Go Bookmaks Yehoo! Toos e deljoous

Z;«ﬁ“ - @ @ g \'kG ,Q htw:f,’*.;";v.hnlels.cmn/pmcess.ﬁeam.do’deswamn:?aﬂ&&e}&d?i-é‘;

G2 Latest Haadines i Gatting Started

14

Paris La Detense/ La Dafense
- Hatel info: 800-248-8357

Hotel Lutetia #xicix
Left Bank, St-Germain-DesFrés / Pans
Hetel info; 800-246-8357 s

1Pars
Hotel info; 200-246-8357

Hotel De Vendome 4wkt
ancordatiadeieing / Paris
Hotel info: 800.246.8357

i
¥ Le Meurice #xkxk
R Ciy Center / Pars

Hoted info: 800-248.2367

0s

% Hotel Royal Monceay ks
sl ~oarss
R 1tetnio: 8002468257

il

L8

L’ Hotel De Sets wikx+
Naxt 7o The Champs Elysess / Pars
Hotet infy: 300-246-8257

07

) ’ . Jolly Hotel Lotti ik

On A Right Bapk Sireel / Paris

09 % Hotel De Crillon xxwxx
fadiy Tuleries Gardens / Pans
“ B Hotel info: 800-248-8267

Done »

Google - | search ~ 85 A% check » X Autourk ) dstors B sotrte ~ B Optons &8
Yr-¢- L Sexchvieb » ] + £} Upgrade o the latest Yahoo! Toobar ~ 521 Mai » 2§ Shopong » »
GLICK TO SOAT BY S0RT BY SORT BY SORT BY h“iz
Hote! Hame Star Rating hotels.com Picks Price |
Sofitel Paris La Defense Centre «k stk

+ Show Amenities & Rales

Hyatt Regency Paris Madeleine #xix+

* 'Show Amenties § Rates

+ Show Amenties § Rates

+ Show Amgries & Rates

+ Show Amenties § Rates

- Hotel inty: 300-246-8357 + Show

< Shaw Amentes 3 Rster

from $113.00

from $427.00

trom $438.00

LOWEST AVG. HGHTLY RATD

¥
5

from $623.00

from 8363.00

LOWEST WG, FEGHRY RATE

¢ D
§

from $229.00

LOWESY AVG. HEHTLY RATE

trom $690.00

FIGURE 1.1 A typical Web page from a hotel search site.

distribution of commodity prices (see the appendix
for details). Assuming that our hypothetical rational
hotel shopper valued time (time is money), the ques-
tion would be whetherthe savings expected to be gained
by additional scanning of hotel results was worth the
time expected to be expended.

In contrast to this simple illustration, typical in-
formation problems solved on the Web are more

complicated (Morrison, Pirolli, & Card, 2001), and
the assessments of the utility of encountered items in
information foraging depend on more subtle cues than
just prices. However, the basic problem of judging
whether continued foraging will be useful or a waste
of valuable time is surely familiar to Web users. It
turns out that this problem is very similar to one class
of problems dealt with in optimal foraging theory.
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FIGURE 1.2 Prices of two-star Paris hotels in the

order encountered in the results of a scarch of a hotel
Web site.

{ —Observed Minimum Price |
------- Expected Minimum Price
‘ « Obsened Price J

$140

$130 - .
$120 .
$110
$100 -

Price

$90

$80 1

$60 -

$50 ‘ 1 . : : . : ‘
1 5 10 15 20 25 30 35 40
List Order

FIGURE 1.3 The minimum two-star Paris hotel price
as a function of order of encounter. The observed
prices are the same as those in figure 1.2. The observed
minimum is the least expensive hotel price found so
far in a process that proceeds through the prices in the
order listed. The expected minimum is a prediction
based on the assumption that prices are being sequen-
tially and randomly sampled from a fixed distribution
of prices (see the appendix for details).
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FIGURE 1.4 Diminishing returns of savings as a func-
tion of list order. The observed savings is the differ-
ence between the observed minimum price found so
far and the first price encountered ($110), presented
in figure 1.3. The expected savings is the difference
between the expected minimum price and first price
encountered.

An Optimal Foraging Analogy

Many animals forage in patchy cnvironments, with
food arranged into clumps. For instance, a bird that
feeds on berries in bushes will spend part of its time
searching for the next bush and part of its time berry
picking after having found a bush. Often, as an ani-
mal forages in a patch, it becomes harder to find food
items. In other words, foraging within a food patch
often exhibits a diminishing returns curve similar to
the one in figure 1.5. Such diminishing returns may
occur, for instance, because prey actively avoid the
forager as they become aware of the threat of preda-
tion. Diminishing returns may also occur because the
forager has a strategy of picking off the more highly
profitable items first (e.g., bigger berries for the hy-
pothetical bird) from a patch with finite resources.
Like the hypothetical Web shopper discussed above,
the problem for a food forager facing diminishing
returns in a patch is whether to continue investing
efforts in getting more out of the patch, or to go look
for another patch.

Figure 1.5 is a graphical version of a simple con-
ventional patch model (Stephens & Krebs, 1986) based
on Chamov’s Marginal Value Theorem (Charnov,
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Gain
(energy)
A

ts tw

FIGURE 1.5 Charnov's Marginal Value Theorem
states that the rate-maximizing time to spend in
patch, t* occurs when the slope of the within-patch
gain function g is equal to the average rate of gain,
which is the slope of the tangent line R*.

1976). The model depicted in figure 1.5 assumes that
an animal foraging for food encounters only one kind
of food patch at random that is never reencountered.
When scarching for the next food patch, it takes
an average of tg amount of time to find the next
patch (between-patch time). Once a patch is en-
countered, foraging within the patch returns some
amount of energy (e.g., as measured by calories) that
increases as a function, g, of the time, tw, spent for-
aging within the patch. Figure 1.5 shows a diminish-
ing returns function, g, for within-patch foraging. The
problem for the forager is how much time, tw, to
spend within each patch before leaving to find the
next patch.

The conventional patch model assumes that the
animal forager optimizes the overall rate of gain, R,
that characterizes the amount of energy gained per
unit time of foraging:

gltw)

g ttw’ (1)
or the amount of energy (calories) gained from an
average patch divided by the time spent traveling
from one patch to the next (t3) plus the time spent
foraging within a patch (tw). The optimal amount of
time, t%, to spend in a patch is the one that yiclds the
maximum rate of gain, R*,

Re = )

e (1.2)

Charnov’s Marginal Value Theorem (Charnov,
1976) is a mathematical solution to this problem of
determining t*. It basically says that a forager should
leave a patch when the rate of gain within the patch
[as measured by the slope of g(tw) or more specifi-
cally the derivative g'(tw)] drops below the rate of
gain that could be achieved by traveling to, and for-
aging in, a new patch. That is, the optimal forager
obeys the rule,

if g'(tw)>R*, then continue foraging in the
patch; otherwise,

when g'(tw)<R*, then start looking for a new
patch.

Charnov’s Marginal Value Theorem can be illus-
trated graphically in figure 1.5 for this simple prob-
lem (one kind of patch, randomly distributed in the
world). First, note that the gain function g begins to
climb only after ts, which captures the fact that it
takes ¢ time to go from the last patch to a new patch.
If we draw a line beginning at the origin to any point
on the gain function, g, then the slope of that line
will be the overall rate of gain R, as specified in
equation 1.1. Figure 1.5 shows such a line drawn
from the origin to a point just tangent to the function
g. The slope of this line is the optimal rate of gain R*
as computed in equation 1.2. This can be verified
graphically by imagining other lines drawn from the
origin to points on the function g. None of those lines
will have a steeper slope than the line plotted in
figure 1.5. The point at which the line is tangent to g
will be the point at which the rate of gain, g'(tw)
within the patch is equal to R*. This point also de-
termines t*, the optimum time to spend within the
average patch.

Production System Models

The rational analyses in Information Foraging The-
ory, which often draw from optimal foraging theory,
are used to inform the development of production
system models. These rational analyses make mini-
mal assumptions about the capabilities of foragers.
Herbert Simon (1955) argued that organisms are not
optimal, rational agents having perfect information
and unlimited computational resources. Rather, or-
ganisms exhibit bounded rationality. That is, agents
are rational and adaptive, within the constraints of
the environment and the psychological machinery
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available to them biologically. Production system
models provide a way of specifying the mechanistic
structures and processes that implement bounded
rationality. On the one hand, production systems have
been used in psychology as a particular kind of com-
puter simulation formalism for specifying the infor-
mation processing that theorists believe people are
performing. On the other hand, production systems
have evolved into something more than just a class of
computer simulation languages: They have become
theories about the basic information processing ar-
chitecture of cognition that is implemented in human
brains (Anderson, 1983; Anderson & Lebiere, 1998;
Newell, 1990).

In general, as used in psychology,’ production
systems are composed of a set of production rules that
specify the dynamics of information processing per-
formed by cognition (how we think). Production rules
operate over memories (or databases) that contain sym-
bolic structures that represent aspects of the external
environment and internal thought (what we think
about). The system operates in a cyclical fashion in
which production rules are selected based on the
contents of the data memories and then exccuted.
The execution of a production rule typically results
in some change to the memories.

The production system models presented in this
book are extensions of ACT theory (Anderson et al.,
2004; Anderson & Lebicre, 1998). ACT (Adaptive
Control of Thought) theory assumes that there are
two kinds of knowledge, declarative and procedural
(Ryle, 1949). Declarative knowledge is the kind of
knowledge that a person can attend to, reflect upon,
and usually articulate in some way (e.g., by declaring
it verbally or by gesture). Declarative knowledge in-
cludes the kinds of factual knowledge that users can
verbalize, such as “The ‘open’ item on the ‘file’ menu
will open a file.” Procedural knowledge is the know-
how we display in our behavior, without conscious
awareness. For instance, knowledge of how to ride a
bike and knowledge of how to point a mouse to a
menu item are examples of procedural knowl-
cdge. Procedural knowledge specifics how declarative
knowledge is transformed into active behavior.

ACT-R (the most recent of the ACT theories) has
a memory for each kind of knowledge (i.c., a de-
clarative memory and a procedural memory) plus a
special goal memory. At any point in time, there may
be a number of goals in goal memory, but the system
behavior is focused to achieve just one goal at a time.
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Complex arrangements of goals and subgoals (e.g,
for developing and executing plans to find and use
information) can be implemented by manipulating
goals in goal memory.

Production rules (or productions) are used to
represent procedural knowledge in ACT-R. That is,
they specify how to apply cognitive skill (know-how)
and how to retrieve and use declarative knowledge.
Table 1.1 presents an example of a production sys-
tem for the task of finding a low-cost hotel using a
Web site. The example in table 1.1 is not intended
to be a psychologically plausible model, but rather it
illustrates key aspects of production system mod-
els and how they are used in this book. The pro-
ductions in table 1.1 are English glosses of produc-
tions written in ACT-R 5.0, which is discussed in
greater detail below.* Each production rule is of the
form

IF (condition), THEN (actions).

The condition of a rule specifies a pattern. When
the contents of declarative working memory match the
pattern, the rule may be selected for application. The
actions of the rule specify additions and deletions of
content in declarative working memory, as well as
motor commands. These actions are executed if the
rule is selected to apply. In ACT-R, each production
rule has conditions that specify which goal informa-
tion must be matched and which declarative memory
must be retrieved. Each production rule has actions
that specify behavioral actions and possibly the set-
ting of subgoals. Typically, ACT-R goal memory is
operated on as what is known in computer science as
a push-down stack: a kind of memory in which the
last item stored will be the first item retrieved. Hence,
storing a new goal is referred to as “pushing a goal on
the stack,” and retrieval is referred to as “popping a
goal from the stack.”

The production rules in table 1.1 assume that
declarative memory contains knowledge encoded
from the external world about the location and con-
tent of links on a Web page. The productions also
assume that an initial goal is set to find a hotel price,
and the productions accomplish the task by “scan-
ning” through the links keeping track of the lowest
price found so far. This involves setting a subgoal to
judge the minimum of the current best price and the
price just attended when each link is scanned. Table
1.2 presents a trace of the productions in table 1.1
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TABLE 1.1 A production system for the task of finding a low hotel price.

Pl: Start
IF the goal is to find a hotel
& there is a page of Web results

& no link location has been processed
THEN  modify the goal to specify that the first location is to be processed

P2: First-link
¥ the goal is to find a hotel
& a link location is specified

& no best price has been noted yet

& the link at the location indicates a price
& the link is followed by a link at a new location

THEN note that the best price is the price from the link at that location
& modify the goal to specify the new location of the next link

P3: Next-link

IF the goal is to find a hotel
& a link location is specified
& there is a current best price

& the link at the location indicates a new price
& the link is followed by a link at a new location

THEN

create a subgoal to ind the minimum of the current price and the new price

& push the subgoal on the goal stack
& modify the current goal to specify the new location of the next link
& note the resulting new minimum price as the best price

P4: Minimum-price-stays-the-same

IF the goal is to find the minimum of the current price and the new price

& therc is a current best price
& there is a new price

& the current best price is less than or equal to the new price

THEN
& pop the subgoal

P5: New-minimum-price

note that the current best price is the minimum

IF the goal is to find the minimum of the current price and the new price

& there is a current best price
& there is a new price

& the current best price is greater than the new price

THEN
& pop the subgoal

P6: Go-do-something-else (Done)

IF the goal is to find a hotel
& there is a current best price
THEN stop

note that the new price is the minimum

operating to scan the list of hotel prices depicted in
figure 1.1 and graphed in figure 1.2.

Production “P1: Start” in table 1.1 applies at cycle 0
in table 1.2 when the goal is to find a hotel price. Pro-
duction “P2: First-link” applies at cycle 1 to scan the
first link location and set the initial minimum hotel
price. Then, production “P3: Next-link” applies re-
peatedly to scan subsequent links (cycles 2-53). For
cach link scanned, P3 sets a subgoal — by creatinga new

goal and making it the focus in goal memory—to
compare the currently scanned price to the curment
minimum price. This subgoal evokes either production
“P4: Minimum-price-stays-the-same” or “P5: New-
minimum-price.” When either P4 or P5 applies, it pops
the subgoal to determine the minimum, and control
passes back to the top-level goal of finding a hotel price.

Note in table 1.2 that the trace ends at cycle 52
with the execution of production “P6: Done” after
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TABLE 1.2 Trace of the production system specified in table 1.1.

Cycle 0: Start

Cycle I: first-link Location: 1 Link-Price: 110 Current-Best: 110

Cycle 2: next-link Location: 2 Link-Price: 86 Current-Best: 110
Cycle 3: new-minimum-price

Cycle 4: next-link Location: 3 Link-Price: 76 Current-Best: 86
Cycle 5: new-minimum-price

Cycle 6: next-link Location: 4 Link-Price: 80 Current-Best: 76
Cycle 7: minimum-price-stays-same

Cycle 8: next-link Location: 5 Link-Price: 86 Current-Best: 76
Cycle 9: minimum-price-stays-same

Cycle 10: nextlink Location: 6 Link-Price: 76 Current-Best: 76
Cycle 11: minimum-price-stays-same

Cycle 12: next-link Location: 7 Link-Price: 96 Current-Best: 76
Cycle 13: minimum-price-stays-same

Cycle 14: next-link Location: 8 Link-Price: 110 Current-Best: 76
Cycle 15: minimum-price-stays-same

Cycle 16: next-link Location: 9 Link-Price: 86 Current-Best: 76
Cycle 17: minimum-price-stays-same

Cycle 18: next-link Location: 10 Link-Price: 96 Current-Best: 76
Cycle 19: minimum-price-stays-same

Cycle 20: next-link Location: 11 Link-Price: 110 CurrentBest: 76
Cycle 21: minimum-price-stays-same

Cycle 22: next-link Location: 12 Link-Price: 86 Current-Best: 76
Cycle 23: minimum-price-stays-same

Cycle 24: nextlink Location: 13 Link-Price: 86 Current-Best: 76
Cycle 25: minimum-price-stays-same

Cycle 26: next-link Location: 14 Link-Price: 76 Current-Best: 76
Cycle 27: minimum-price-stays-same

Cycle 28: nextlink Location: 15 Link-Price: 90 Current-Best: 76
Cycle 29: minimum-price-stays-same

Cycle 30: next-link Location: 16 Link-Price: 76 Current-Best: 76
Cycle 31: minimum-price-stays-same

Cycle 32: next-link Location: 17 Link-Price: 130 Current-Best: 76
Cycle 33: minimum-price-stays-same

Cycle 34: next-link Location: 18 Link-Price: 86 Current-Best: 76
Cycle 35: minimum-price-stays-same

Cycle 36: next-link Location: 19 Link-Price: 98 Current-Best: 76
Cycle 37: minimum-price-stayssame

Cycle 38: next-link Location: 20 Link-Price: 86 Current-Best: 76
Cycle 39: minimum-price-stays-same

Cycle 40: next-link Location: 21 Link-Price: 120 Current-Best: 76
Cycle 41: minimum-price-stays-same

Cycle 42: next-link Location: 22 Link-Price: 80 Current-Best: 76
Cycle 43: minimum-price-stays-same

Cycle 44: next-link Location: 23 Link-Price: 80 Current-Best: 76
Cycle 45: minimum-price-stays-same

Cycle 46: next-link Location: 24 Link-Price: 100 Current-Best: 76
Cycle 47: minimum-price-stays-same

Cycle 48: next-link Location: 25 Link-Price: 86 Current-Best: 76
Cycle 49: minimum-price-stays-same

Cycle 50: next-link Location: 26 Link-Price: 66 Current-Best: 76
Cycle 51: new-minimum-price

Cycle 52: DONE!! Best price is: 66

Total Time: 782.30005 sec

11
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scanning the link at location 26 in the list of results.
The list actually contains 44 links in the result list
(hgure 1.2). The production system stops at link lo-
cation 26 because of the way it implements elements
of the rational analysis described above. Productions
“P3: NextJink” and “P6: Done” match very similar
patterns in declarative memory. In fact, on every
cycle that P3 or P6 fires in the trace, the other pro-
duction also matches. In production system termi-
nology, P3 and P6 form a conflict set when on a
particular cycle they both match the current pattern
in the goal stack and declarative memory. In such
cases, the utility of each production in the conflict set
is evaluated and used to perform conflict resolution to
determine which production to execute.

Production “P6: Donc” is associated with a utility
that corresponds to R discussed above: the overall rate
of gain. I simply assumed that this corresponds to
how the production system values its time. For the
trace in table 1.2, T assumed that the production
system valued its time at R = $10/hour.

Production “P3: Next-link” is associated with a
utility that corresponds to g'(t) discussed above: the
rate of savings that would be achieved by looking at
the next link: expected savings from scanning next
link/time to scan link (in hours). The appendix dis-
cusses how expected savings is computed assuming
the distribution of hotel prices evident in figure 1.2.
From self-observation, I noted that it took 30 sec (30/
3600 hour) to scan a link on the Web site depicted in
figure 1.1. The competition between productions P3
and P6 implements the key idea of Charnov’s Mar-
ginal Value Theorem: As long as the rate of savings
expected for production “P3: Nextlink” is greater
than the overall rate of gain, R, associated with “P6:
Done,” then the system continues to scan links;
otherwise, it quits.

Summary

I have presented this simple concrete example to
sketch out the overall framework and approach of
Information Foraging Theory before beginning more
abstract discussion of framework and method. At this
preliminary stage, it was necessary to gloss over unre-
alistic assumptions about Web use and the technical
details of the analysis and model. However, it is im-
portant to point out two realistic aspects of the
example. First, as will become clear in chapter 3, the
Web does have a patchy structure (e.g., Web sites and

search results), and diminishing returns within those
information patches is common. For instance, figure
1.6 is based on data from a study of medical infor-
mation seeking (Bhavnani, 2005).° Bhavnani, Jacob,
Nardine, and Peck (2003) asked melanoma experts
to identify melanoma risk facts that they identified as
important for a melanoma patient to understand.
Figure 1.6a shows the distribution of melanoma risk
facts across Web pages. Very few pages contain all
14 expert-identified melanoma risk concepts, but
many contain one of the melanoma risk facts. Figure
1.6b is an estimate of the number of melanoma risk
facts that a user would encounter as a function of
visits to melanoma-related pages (Bhavnani et al,
2003). Note that it is a diminishing returns curve
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FIGURE 1.6 (a) The distribution of number of key
concepts about melanoma risk across Web pages,
and (b) the cumulative number of key concepts en-
countered as a function of size of sample of pages

(Bhavnani, 2005; Bhavnani et al., 2003).
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and that the user is expected to require 25 page visits
to find all expert-identified melanoma risk facts.

In the remaining scctions of this chapter, I pro-
vide an overview of broader framework and method.
The remainder of this book is about the empirical
and theoretical details.

Man the Informavore

All men by nature desire knowledge. — Aristotle,
Metaphysics

The human propensity to gather and use information
to adapt to everyday problems in the world is a core
piece of human psychology that has been largely ig-
nored in cognitive studies. George A. Miller (1983),
however, recognized the centrality of this human
propensity to our cognitive naturcs and argued that
mankind might fruitfully be viewed as a kind of in-
formavore: a species that hungers for information in
order to gather it and store it as a means for adapting
to the world. Picking up on this idea, Dennett (1991)
traced out a plausible evolutionary history in which
he suggested that our ancestors might have developed
vigilance bchaviors that required surveying and as-
sessing the current state of the environment, much
like the prairie dogs who pop up on two fect to per-
form their situation appraisals or the harbor seals that
break the surface in the middle of a beach break to
check out whether the surfers are friends, foe, or prey.
Adaptive pressures to gain more useful, actionable
knowledge from the environment could lead to the
marshaling of available cognitive and behavioral ma-
chinery, resulting in organisins, such as primates, that
have active curiosity about the world and themselves.
Humans, of course, are extreme in their reliance on
information, with language and culture, and now
modem technology, providing media for transmis-
sion within and across generations. Humans are the
Informavores rex of the current era.

George Miller’s notion of humans as informavores
suggests that our gencs have bestowed upon us an
evolving behavioral repertoire that now includes the
technological aspects of our culture associated with
finding, saving, and communicating information. It is
commeon in evolutionary discussions to distinguish be-
tween genotype and phenotype (Johanssen, 1911). The
genotype is the blueprint for an individual. What gets
passed from one generation to the next (if it survives
and reproduces) are the genotypic blueprints. Phe-
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notypes are the outward manifestation of the geno-
type. Typically, people think of this as the bodily
structure and behavior of the individual organism.
However, Dawkins (1989) introduced the notion of
extended phenotype to clarify the observation that
the genotype has extended effects on the world at
large that go beyond the actual body and behavior of
the individual. Not only do beavers have tails, but they
use them to make dams. Not only do spiders have legs,
but they use them to make webs. Humans have not
only brains but also external technology for storing
information, and information foraging strategies that
can be invoked to call forth the right knowledge, at
the right time, to take useful action. It remains an
open question as to why humans have evolved such
information collection strategies—a question that 1
raise again at the end of this book.

The Adaptive Pressure of the Wealth
of Information

Thanks to science and technology, access to factual
knowledge of all kinds is rising exponentially while drop-
ping in unit cost. ... We are drowning in information,
while starving for wisdom.—E. O. Wilson, Consilience

Information Foraging Theory emerges from a serious
consideration of Miller's notion of informavores. A
scrious consideration of the concept leads to ques-
tions regarding the adaptive forces that drive human
interaction with information. Simon (1971) articu-
lated the basic design problem facing us: “What in-
formation consumes is rather obvious: it consumes
the attention of its recipients. Hence a wealth of in-
formation creates a poverty of attention, and a need
to allocate that attention efficiently among the over-
abundance of information sources that might con-
sume it” (pp. 40-41).

According to statistics compiled by the University
of California-Berkeley School of Information Sci-
ence (Lyman & Varian, 2003), almost 800 megabytes
of recorded information are produced per person per
year, averaged over the estimated 6.3 billion people
in the world. This is the equivalent of about 30 lincar
feet of books. In an information-rich world, the real
design problem to be solved is not so much how to
collect and distribute more information but rather
how to increase the rate at which persons can find
and attend to information that is truly of value to
them.
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The Principle of the Extremization
of Information Utility as a Function
of Interaction Cost

An investment in knowledge always pays the best
interest. —Benjamin Franklin

In modern society, people interact with information
through technology that more or less helps them find
and use the right knowledge at the right time. In
evolutionary terms, one can argue that increasing the
rate of gain of valuable information increases fitness.
As Sir Francis Bacon observed, “knowledge is power.”
Power (control over the world to achieve one’s goals)
can be improved by better knowledge, or lower costs
of access and application of knowledge. In evolu-
tionary terms, an agent’s fitness is improved to the
extent that it can predict and control the environ-
ment in order to solve the problems it faces in every-
day life. In psychological terms, increasing the rate at
which people can find, make sense of, and use valu-
able information improves the human capacity to
behave intelligently. We should expect adaptive sys-
tems to evolve toward states that maximize gains of
valuable information per unit cost (Resnikoff, 1989,
p- 97). A uscful way of thinking about such adapta-
tion is to say that

Human-information interaction systems will tend
to maximize the value of external knowledge
gained relative to the cost of interaction.

Schematically, we may characterize this maximiza-
tion tendency® as

max Expected valuc of know].edgc gained ‘ (13)
Cost of interaction

Cognitive systems engaged in information foraging
will exhibit such adaptive tendencies, and they will
prefer technologies that tend to maximize the value
{or utility) of knowledge gained per unit cost of in-
teraction. For instance, sensory systems appear to
evolve in ways that deliver more bits of information for
the amount of calories expended. Similarly, offices,
with their seeming chaotic mess of piles of papers,
books, and files, appear to become organized in ways
that optimize access costs of frequently nceded infor-
mation {Case, 1991; Malone, 1983; Soper, 1976).
Resnikoff (1989, pp. 112-117) presented a mathe-
matical analysis suggesting that physical library cata-

log card systems would become arranged in ways that
minimized manual search time. Information Forag-
ing Theory assumes that people prefer information-
seeking strategies that yield more useful information
per unit cost. People tend to arrange their environ-
ments (physical or virtual) to optimize this rate of gain.
People prefer, and consequently sclect, technology
designs that improve returns on information foraging.

The Exaptation of Food Foraging Mechanisms

Natural selection favored organisms—including our
human ancestors—that had better mechanisms for
extracting encrgy from the environment and translat-
ing that energy into reproductive success. Organisms
with better food-foraging strategies (for their particular
cnvironment) were favored by natural selection. Our
ancestors evolved perceptual and cognitive mecha-
nisms and strategies that were very well adapted to the
task of exploring the environment and finding and
gathering food. Information Foraging Theory assumes
that modern-day information foragers use perceptual
and cognitive mechanisms that carry over from the
evolution of food-foraging adaptations.

If information foraging is like food foraging, then
models of optimal foraging developed in the study of
animal behavior (Stephens & Krebs, 1986) and an-
thropology (Winterhalder & Smith, 1992) should be
relevant. Figure 1.5 presents the conventional patch
modcl and Charmov’s Marginal Value Theorem as a
possible analog for information foraging at a Web
site. A typical optimal foraging model characterizes
an agent’s interaction with the environment as an
optimal solution to the tradeoff of costs of finding,
choosing, and handling food against the encrgetic
benefit gained from that food. These models would
look very familiar to an engineer because they are
basically an attempt to understand the design of an
agent’s behavior by assuming that it is well engi-
neered (adapted) for the problems posed by the en-
vironment. Information foraging modcls include
optimality analyses of different information-seeking
strategies and technologies as a way of understanding
the design rationale for user strategies and interaction
technologies.

Optimal foraging theorists assume that energy, orig-
inating predominantly from the sun, seeps through the
food chain to be deposited in various plants and ani-
mals that are distributed variably through the envi-
ronment. Food foragers may have different mecha-
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nisms and strategics available to them for navigating
through the environment. Their potential sources of
food may have different prevalences in different hab-
itats and may have different profitabilities in terms of
how many calories can be extracted when foraged.
The optimal forager is one who has the strategics,
mechanisms, diets, and so forth, that maximize the
calories gained per unit of effort expended.” Similarly,
Information Foraging Theory assumes that informa-
tion comes to be stored in various prevalences in dif-
ferent kinds of repositories, in various forms and
media. The information forager has different means
available for navigating and searching the information
environment, and different information sources have
different profitabilities in terms of the interaction cost
required to gain useful information. As suggested by
equation 1.3, the optimal information forager is one
who maximizes the value of knowledge gained per
unit cost of interaction.

Application to Human-Information
Interaction

The legacy of the Enlightenment is the belief that cn-
tirely on our own we can know, and in knowing, under-
stand, and in understanding, choose wisely.—E. O. Wilson,
Consilience

Human-information interaction (HII) is a nascent
field that is concerned with how people interact with,
and process, outwardly accessible information in scr-
vice of their goals.® It adopts an information-centric
approach rather than the computer-centric approach
of the field of human-computer intcraction (HCI)
{Lucas, 2000). This shift to an information-centric
focus is a natural evolution for the field of HCI be-
cause of the increasing pervasiveness of information
services, the increasing transparency of user inter-
faces, the convergence of information dclivery tech-
nologies, and the trend toward ubiquitous computing.

Access to the Internct is pervasive in the developed
world through land lines, satellite, cable, and mobile
devices. The field of HCI, over the past two decades
and more, has led to the development of computers
and computer applications that are transparent to
users performing their tasks. In parallel, the business
world around consumer media technologies shows
excitement over the convergence of television, cell
phones, personal computers, PDAs (personal digital
assistants), cars, sct-tops, and other consumer elec-
tronics devices, as well as the convergence among the
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means for transporting information, such as the In-
ternet, radio, satellite, and cable. Research on ubiqui-
tous computing looks forward to a world in which
computational devices are basically everywhere in our
homes, mobile devices, cars, and so on, and these
devices can be marshaled to perform arbitrary tasks for
users. The net effect of these trends is to make comput-
ers invisible, just as electricity and electric motors are
invisible in homes today {Lucas, 2000). As computers
become invisible, and information becomes ample
and pervasive, we expect to see a shift in studies from
HCI to HIL Rather than focus on the structure of de-
vices and application programs, the focus of HII re-
search must center on content and interactive media.

Information Foraging Theory arose during the
1990s, coinciding with an explosion in the amount of
information that became available to the average
computer user and with the development of new
technologics for accessing and interacting with infor-
mation. The late 1980s witnessed several strands of
HCI research that were devoted to ameliorating prob-
lems of exploring and finding clcctronically stored
information. It had become apparent that uscrs could
no longer remember the names of all their electronic
files, and it was even more difficult for them to guess
the names of files stored by others (Furnas, Landauer,
Gomez, & Dumais, 1987). One can see proposals in
the mid- to late 1980s HCI literature for methods to
enhance users’ ability to search and explore external
memory. Jones (1986) proposed the Memory Ex-
tender (ME), which used a model of human associa-
tive memory (Anderson, 1983) to automatically re-
trieve files represented by sets of keywords that were
similar to the sts of keywords representing the users’
working context. Latent Semantic Analysis (LSA;
Dumais, Furnas, Landauer, Deerwester, & Harsh-
man, 1988) was developed to mimic human ability to
detect deeper semantic associations among words,
such as “dog” and “cat,” to similarly enhance infor-
mation retrieval. Interestingly, the work on ME and
LSA was contrasted with work in the “traditional” field
of information retrieval in computer science, which
had a relatively long history of developing automated
systems for storing and retrieving text documents. The
CHI ’88 conference where LSA was introduced also
hosted a panel bemoaning the fact that automated
information retrieval systems had not progressed to the
stage where anyone but dedicated experts could op-
crate them (Borgman, Belkin, Croft, Lesk, & Land-
auer, 1988). Such systems, however, were the direct
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ancestors of modern search engines found on the
World Wide Web.

Hypermedia also became a hot topic during the
late 1980s, with Apple’s introduction of HyperCard
in 1987, the first ACM Conference on Hypertext in
1987, and a paper session at the CHI ’88 conference.
The very idea of hypertext can be traced back to
Vannevar Bush’s Atlantic Monthly article, “As We
May Think,” published in 1945. Worried about schol-
ars becoming overwhelmed by the amount of infor-
mation being published, Bush proposed a mechanized
private file system, called the Memex, that would
augment the memory of the individual user. It was
explicitly intended to mimic human associative
memory. Bush’s article influenced the development of
Douglas Engelbart’s NLS (oNLine System), which
was introduced to the world in a tour-de-force dem-
onstration at the 1968 Fall Joint Computer Confer-
ence. The demonstration of NLS —a system explicitly
designed to “augment human intellect” (Engelbart,
1962) —also introduced the world to the power of
networking, the mouse, and point-and-click interac-
tion. Hypertext and hypermedia research arose during
the late 1980s because personal computing power,
networking, and user interfaces had cvolved to the
point where the visions of Bush and Engelbart could
finally be realized for the average computer user.

The confluence of increased computing power,
storage, networking and information access, and hy-
permedia research in the late 1980s set the stage for the
widespread deployment of hypermedia in the form
of the World Wide Web. In 1989, Tim Berners-Lee
(1989) proposed a solution to the problems that were
being faced by the CERN community in dealing with
distributed collections of documents, which were stored
on many types of platforms, in many types of formats.
This proposal led directly to the development of
HTML, HT'TP, and, in 1990, the rclease of the World
Wide Web. Berners-Lee’s vision was not only to provide
users with more effective access to information but
also to initiate an evolving web of information that re-
flected and enhanced the community and its activities.

The emergence of the Web in the 1990s provided
new challenges and opportunities for HCIL. The in-
creased wealth of accessible content, and the use of
the Web as a place to do business, exacerbated the
need to improve the user experience on the Web.

The usability literature that has cvolved sur-
rounding the Web user experience is incredibly rich
with design principles and maxims (Nielsen, 2000;

Spool, Scanlon, Schroeder, Snyder, & DeAngelo,
1999), the most important of which is to test designs
with users. Much of this literature is based on a mix of
empirical findings and expert (“guru”) opinion. A
good deal of it is conflicting. The development of
theory in this area can greatly accelerate progress and
meet the demands of changes in the way we interact
with the Web. Greater theoretical understanding and
the ability to predict the effects of alternative designs
could bring greater coherence to the usability litera-
ture and provide more rapid evolution of better
designs. In practical terms, a designer armed with
such theory could explore and explain the effects of
different design decisions on Web designs before the
heavy investment of resources for implementation and
testing. This exploration of design space is also more
cfficient because the choices among different design
alternatives are better informed: Rather than ran-
domly generating and testing design alternatives, the
designer is in a position to know which avenues are
better to explore and which are better to ignore. Un-
fortunately, cognitive engineering models that have
been developed to deal with the analysis of expert
performance on well-defined tasks involving applica-
tion programs (Pirolli, 1999) have little applicability to
understanding foraging through content-rich hyper-
media, and consequently new theories are needed.

Methodological Adaptationism

Adaptationist reasoning is not optional; it is the heart and
soul of evolutionary biology.—D. C. Dennett, Darwin’s
Dangerous Idea

"The concept of informavores, and concern with the
application domain of HII, leads us to reconsider the
dominance of strictly mechanistic analyses of HCL
Miller, in his 1983 article about “informavores,” com-
mented on the incompleteness of the mechanistic
approach by using the following analogy:

Insofar as a limb is a lever, the theory of levers
describes its behavior—but a theory of levers does
not answer every question that might be asked
about the structure and function of the limbs of
animals. Insofar as the mind is used to process
information, the theory of information processing
describes its behavior—but a theory of informa-
tion processing does not answer every question
that might be asked about the structure and func-
tion of the minds of human beings. (p. 112)
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Information processing (mechanistic) analyses of
HCI—by themselves--give only partial explanations.
They provide mechanistic explanations of the “le-
vers” of the mind. In reaction to this inadequacy,
Information Foraging Theory has been guided by the
heuristics and explanatory framework of methodo-
logical adaptationism, and the specific version of it
developed by Anderson (1990) called rational anal-
ysis (see also Oaksford & Chater, 1998). The illus-
tration above concerning hotel prices on the Web
involved a very simple rational analysis. Methodo-
logical adaptationism presumes that it is a good
heuristic for scientists to assume that evolving, bchav-
ing systemns are rational, or well designed, for fulfilling
certain functions in certain environments. There is an
assumption of ecological rationality regarding the
behavior of the system being observed (Bechtel, 1985;
Dennett, 1983, 1988, 1995; Gigerenzer, 2000). ‘The
adaptationist approach involves a kind of reverse en-
gineering in which the analyst asks (a) what envi-
ronmental problem is solved, (b) why is a given sys-
tem a good solution to the problem, and (c) how is
that solution realized (approximated) by mechanism.

Versions of methodological adaptationism have
shaped research programs in behavioral ecology (e.g.,
Mayr, 1983; Stephens & Krebs, 1986; 'l'inbergen,
1963), anthropology (e.g., Winterhalder & Smith,
1992), and neuroscience (e.g., Glimcher, 2003). 'The
approach gained currency in cognitive science during
the 1980s as a reaction to ad hoc models of how people
performed complex cognitive or perceptual tasks. At
that time, models of cognition and perception were
gencrally mechanistic, detailing perceptual and cog-
nitive structures and the processes that transformed
them. The Model Human Processor (MHP) and
GOMS (Goals, Operators, Methods, and Selection
rules; Card, Moran, & Newell, 1983) are cognitive
engineering examples in the field of HCI that derive
from this approach. The MHP specifies a basic set of
information storage and processing machinery, much
like a specification of the basic computer architecture
for a personal computer. GOMS specifies basic task
performance processes, much like a mechanical pro-
gram that “runs” on the MHP.

Around the same time that GOMS and MHP
were introduced into HCI, there emerged a concern
among cognitive scicntists that mechanistic infor-
mation processing models, by themsclves, were not
enough to understand the human mind (Anderson,
1990; Marr, 1982). A major worry was that mecha-
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nistic models of cognition had been developed in an
ad hoc way and provided an incomplete explanation
of human behavior. It had become common practice
to cobble together a program that simulated human
performance on some task and then claim that the
program was in fact a theory of the task (Marr, 1982,
p- 28). Anderson (1990) lamented that cognitive mod-
elers “pull out of an infinite grab bag of mechanisms
bizarre creations whose only justification is that they
predict the phenomena in a class of experiments. .. .
We almost never ask the question of why these
mechanisms compute the way they do” (p. 7, em-
phasis added).

Figuring out a mechanistic account of human
behavior—for instance, with MHP analysis—is no
small feat. However, as the Miller quote above suggests,
such accounts do not explain everything. The mind is
not just any old arbitrary, cobbled-together machine;
rather, it is a fantastically complex machine that has
been designed by evolution to be well tailored to the
demands of surviving and reproducing in the envi-
ronment. The adaptationist approach recognizes that
one can better understand a machine by understand-
ing its function. By this I mean both that (a) adapta-
tionist accounts make more sense and (b) the search
for better understanding proceeds at a faster pace.

Levels of Explanation

The analysis of pcople interacting with information
involves interrelated layers of explanation. This is
because scientific models in this area assume that
human activity is (a) purposeful and adaptive, which
requires a kind of rational analysis, (b) based on knowl-
edge, (c) computed by information processing mech-
anisms, which are (d) realized by physical, biological,
processes. T'able 1.3 presents a summary of the rele-
vant framework that has emerged in the behav-
ioral sciences (see, e.g., Anderson, 1990; Cosmides,
Tooby, & Barow, 1992; Gigerenzer, 2000; Winter-
halder & Smith, 1992a).

Rational analysis, in the case of Information
Foraging Theory, focuses on the task environment
that is the aim of performance, the information en-
vironment that structures access to valuable knowl-
edge, and the adaptive fit of the HII system to the
demands of these environments. Rational analysis
assumes that the structure of behavior can be un-
derstood in terms of its adaptive fit to the structure
and constraints of the environment. The analysis of

-
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TABLE 1.3 Levels of explanation.

Level Question Stance Analysis Elements Examples
Rational What environmental Design * States, resources, * Optimal foraging
problem is solved? state dynamics theory
Why is this solution * Constraints, * Information
a good one? affordances Foraging Theory
* Feasible strategics
¢ Optimization criteria
Knowledge What does the system Intentional * Environment * Knowledge-level
know? * Goals, preferences analysis
* Knowledge
* Perception, action
Cognitive How does the Information * Cognitive states * ACT-R
system do it? processing * Cognitive processes * Soar
Biological How docs the system Biophysical * Neural processcs * Neural models

physically do it?

searching for hotel prices on Web involved a rational
analysis of the expected savings to be gained from
information search and an analysis of the rational
choice to make when faced with decisions of whether
to continue search or to give up. When performing a
rational analysis the theorist may be said to take a
design stance (Dennett, 1995) that focuses on an
analysis of the functionality of the system with respect
to its ostensive purpose. At this level, the analyst acts
most purely as an engineer concerned with why users’
behavior is rational given the task context in which it
occurs, and it is assumed that users arc optimizing
their performance in achieving their goals.
Knowledge-level analysis concemns the knowledge
content involved in achieving goals. Knowledge-level
analysis involves descriptions of a system in inten-
tional terms with the assumption that behavior is the
product of purposes, preferences, and knowledge.
The knowledge level has been important in artificial
intelligence since its introduction by Newell (1982).
A knowledge-level analysis of the task of searching for
hotel prices on the Web was a prerequisite to the
specification of the production rules and chunks in-
volved in the cognitive simulation. Dennett (1988)
defined an observer who describes a system using

o

an intentional vocabulary (e.g., “know,” “believe,”
“think”) as one taking an intentional stance. Typi-
cally, a task analysis focuses mainly on an analysis of
users’ knowledge, preferences, perceptions, and ac-

tions, with respect to the goal and environment. At

this level of analysis, it is assumed that users deploy
their knowledge to achieve their goals, and the focus
is on identifying what knowledge is involved.

Modern cognitive psychology assumes that the
knowledge level can be given a scientific account
(i.e., be made predictable) by explaining it in terms
of mechanistic information processing (Newel],
1990). This is the cognitive level of explanation. 'This
level of analysis focuses on the properties of the in-
formation processing machinery that evolution has
dealt to humans to perceive, think, remember, learn,
and act in what we would call purposeful and knowl-
edgeable ways. 'This is the level of most traditional
theorizing in cognitive psychology and HCI—the
level at which computational models may, in prin-
ciple, be developed to simulate human cognition.
GOMS (Card et al.,, 1983), described above, is an
example of an analysis method aimed at cognitive-
level analysis. Cognitive architectures such as ACT-R
{(Anderson et al., 2004) or Soar (Newell, 1990) and
the simulations developed in those architectures are
developed at the cognitive level. The production
system specified in table 1.1 was a simple example of
a cognitive-level analysis.

Accounts at the cognitive level are assumed to
be instantiated at the biological level by the physi-
cal machinery of the brain and body. The biological
level of explanation specifies the proximal physical
mechanisms underlying behavior. For instance, An-
derson ct al. (2004) have recently presented results
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suggesting the mapping of the ACT-R architecture
onto neural structure and functioning.

Phenomena at Different Time Scales
of Behavioral Analysis

Many of our goals can drive our behavior for days,
months, and even years. These longer term goals
are typically realized by task structures composed of
many shorter term goals. Card et al. (1983) suggested
that there is a base level of tasks, called the unit task
level, that controls immediate behavior. Unit tasks
empirically take about 10 seconds. To an approxi-
mation, unit tasks are where “the rational rubber
meets the mechanistic road.” To an approximation,
the structure of behavior above the unit task level
largely reflects a rational structuring of the task within
the constraints of the environment, whereas the struc-
ture within and below the unit task level reflects
cognitive and biological mechanisms. Phenomena
occur at multiple grain sizes of time, and effects
propagate in both upward and downward directions:
Rational/ecological structuring goes downward from
longer time scales of phenomena, and environment
and proximal mechanism constraints go upward. A
significant claim of the framework adopted by In-
formation Foraging Theory from Newell (1990) and
Anderson (2002) is that the phenomena of human
cognition can be decomposed and modeled at many
different time scales.

Newell (Newell, 1990; Newcll & Card, 1985)
argued that human behavior arises from a hierarchi-
cally organized system in which the basic time scale
of operation of each system level increases by a factor
of 10 as one moves up the hierarchy (table 1.4). The
phenomena at each band in table 1.4 are largely
dominated by different kinds of factors. Behavioral
analysis at the biological band (approximately milli-
seconds to tens of milliscconds) is dominated by
biochemical, biophysical, and especially neural pro-
cesses, such as the time it takes for a neuron to fire.
The psychological band of activity (approximately
hundreds of milliseconds to tens of seconds) has
been the main preoccupation of cognitive psychology
(Anderson, 1983, 1993; Newell, 1990). At this time
scale, it is assumed that elementary cognitive mech-
anisms play a major part in shaping bchavior. The
typical unit of analysis is a single response function,
involving a perceptual input stage, a cognitive stage,
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TABLE 1.4 Time scale on which human action
oceurs.

Scale

(seconds) Time Unit Band

107 Months Social
108 Weeks

10° Days

10 Hours Rational
10° 10 minutes

10 Minutes

10! 10 seconds Cognitive
10° 1 second

107} 100 milliseconds

1072 I millisecond Biological

Different bands are quite different phenomenological worlds.

Adapted from Newell (1990, p. 122).

and a stage of action output—for instance, finding a
word in the menu of a text editor and moving a mouse
to select the menu item. The mechanisms involved at
this level of analysis include elementary information
processing functions such as memory storage and
retrieval, recognition, categorization, comparison of
one information element to another, and choosing
among alternative actions.

As the time scale of activity increases, “there will be
a shift towards characterizing a system . . . without re-
gard to the way in which the internal processing ac-
complishes the linking of action to goals” (Newell,
1990, p. 150). This is the rational band of phenomena
(minutes to days). The typical unit of analysis at this
level is the task, which is defined, in part, by a goal ltis
assumed that an intelligent agent will have preferences
for actions that it perceives to be applicable in its en-
vironment and that it knows will move the current
situation toward the goal. So, on the onc hand, goals,
knowledge, perceptions, actions, and preferences
shape behavior. On the other hand, the structure,
constraints, and resources of the environment in
which the task takes place—called the task environ-
ment (Newell & Simon, 1972)—will also greatly
shape behavior. Explanations at the rational band as-
sume that behavior is governed by rational principles
and that it is largely shaped by the structure and con-
straints of the task environment, although it is also
realized that people are not infinitely and perfectly
rational (Simon, 1955). The rationalc for behavior at
this level is its adaptive fit to its task environment.
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Task Environments and
Information Environments

To understand information foraging requires analysis
of the environment in addition to analysis of the for-
ager. The importance of the analysis of the environ-
ment to psychology was a more general point made by
Brunswik (1952) and Simon (1981). It is useful to
think of two interrelated environments in which an
information forager operates: the task environment and
the information environment. The classical definition
of the task environment is that it “refers to an envi-
ronment coupled with a goal, problem or task—the
one for which the motivation of the subject is as-
sumed. It is the task that defines a point of view about
the environment, and that, in fact allows an environ-
ment to be delimited” (Newell & Simon, 1972, p. 55).
The task environment is the scientist’s analysis of those
aspects of the physical, social, virtual, and cognitive
environments that drive human behavior.

The information environment is a tributary of
knowledge that permits people to more adaptively
engage their task environments. Most of the tasks that
we identify as significant problems in our everyday life
require that we get more knowledge —become better
informed — before taking action. What we know, or do
not know, affects how well we function in the impor-
tant task environments that we face in life. External
content provides the means for expanding and im-
proving our abilities. The information environment,
in turn, structures our interactions with this content.
Our particular analytic viewpoint on the information
environment will be determined by the information
needs that arise from the embedding task environ-
ment, From the standpoint of a psychological analysis,
the information environment is delimited and defined
in relation to the task environment.

Problem Spaces

Alarge class of tasks may be understood as variations on
problem solving. Indeed, Newell (1990) essentially
argued that all of cognition could be understand by
taking this stance. Newell and Simon (1972) charac-
terized problem solving formally as a process of search
through a problem space. A problem space consists of
an initial situation called the start state and some de-
sired situation called the goal state. Other situations
that may occur while solving the problem are inter-
mediate states. Problem-solving operators (e.g., actions

performed by the problem solver) transform problem
states. For instance, the problem faced by a toddler
seeking to eat cookies from a cupboard may have an
initial state that consists of the child standing on the
floor and a chair some distance away, and the child
may apply problem-solving operators such as moving
the chair, climbing on the chair, and opening the
cupboard to transform the initial state toward the goal
state. The various states that can be achieved are re-
ferred to as a problem space (or sometimes a state
space). Often, any given problem state is a situation
that affords many possible actions (operators). In such
cases, cach state branches to many possible subsequent
states, with each branch in each path corresponding to
the application of an operator. The problem is to find
some path through the maze of possible states. Finding
this path is a process of search through a problem space.

lli-Structured Problems and
Knowledge Search

Well-structured problems, such as puzzles and gamcs,
have well-defined initial states, goal states, operators,
and other problem constraints, which contrasts with
the ill-structured problems. Nl-structured problems,
such as choosing a medical treatment or buying a
house, typically require additional knowledge from
external sources in order to better understand the
starting state, to better define a goal, or to specify the
actions that are afforded at any given state (Simon,
1973). People typically need to perform knowledge
search in order to solve their ill-structured problems
(e.g., to define aspects of a problem space that permit
effective or cfficient problem space search). The in-
formation environment is a potential source of valu-
able knowledge that can improve our ability to achieve
our goals, especially when they involve ill-structured
tasks. More generally, knowledge shapes human funec-
tionality, and conscquently external access to large
volumes of widely varicgated knowledge may improve
our range of adaptation because we can solve more
problems, or solve problems using better approaches.

Knowledge-Level Systems

Knowledge, if it does not determine action, is dcad
to us.— Plotinus

Externally available content provides us with knowl-
edge valuable to the achievement of our goals. Given
the central role of external knowledge to Informa-
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tion Foraging Theory, it is useful to review Newell’s
(1982) influential framework for the study of knowl-
edge systems. This provides a way of characteriz-
ing adaptation in terms of knowledge content. This
framework, which arises from the cognitive sciences,
assumes that knowledge shapes the functionality of
our cognitive abilities and that intelligent behavior
depends on finding and using the right knowledge
at the right time. This framework was largely articu-
lated by Allen Newell (1982, 1990, 1993) and Daniel
Dennett (1988, 1991). Traditionally (e.g., Dennett,
1988; Newell, 1990), the information processing
system under consideration for analysis is an unaided
person or computer program working in some task
environment. However, we can extend the approach
to understand a systern that consists of a person tightly
coupled with technological support and access to a
teemning world of information.

Over the course of 20 years, Newell (Moore &
Newell, 1973; Newell, 1982, 1990; Newell et al., 1992)
developed a set of ideas about understanding how
physical systems could be scientifically characterized
as knowledge systems. A parallel set of ideas was de-
veloped by Dennett (1988) in his discussion of inten-
tional systems.” The notions developed by Newell and
Dennett derive from the philosophical contributions of
Brentano (1874/1973). The knowledge level was de-
veloped by Newell (1982) as a way to address questions
about the nature of knowledge and the nature of sci-
entifically ascribing knowledge to an agent.

In the frame of reference developed by Newell and
Dennett, scientific observers ascribe knowledge to be-
having systems. A key assumption is that knowledge-
level systems can be specified completely by reference
to their interaction with the external world, without
reference to the mechanical means by which the in-
teractions take place. A knowledge-level system con-
sists of an agent behaving in an environment. The
agent consists of a set of actions, a set of perceptual
devices, a goal (of the agent), and a body of knowledge.
The operation of such systems is governed by the
principle of rationality: If the agent knows that one of
its actions will lead to a situation preferred according
to its goal, then it will intend the action, which will
then be taken if it is possible. As Newell (1982) stated,
knowledge is “whatever can be ascribed to an agent,
such that its behavior can be computed according to
the principle of rationality” (p. 105). In essence, the
basic observations at the knowledge level are state-
ments of the form:
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In situation S, agent A behaves as if it has knowl-
edge K.

Value and Structure of Knowledge

New knowledge is the most valuable commodity on earth.
The more truth we have to work with, the richer we
become. —Kurt Vonnegut, Breakfast of Champions

Our ability to solve ill-structured problems such
buying a house, finding a job, or throwing a Super
Bowl party is, in large part, a reflection of the par-
ticular external knowledge used to structure and solve
the problem. Consequently, the value of external con-
tent may often ultimately be measured in the im-
provements to the outcomes of an embedding task.
The value of knowledge gained may be measured in
terms of what additional value it attains for the agent.
Of course, a lot of external content provides no new
knowledge (e.g., perhaps it is “old news” to us), or
information that does not contribute to our goals.

In simple well-structured problems, the value of
knowledge gained from information foraging can be
gencerally expressed as a difference between two strat-
egics: one that rationally uses knowledge acquired by
foraging from external information sources to choose
among outcomes, and another that does not use such
information.'® For instance, suppose a man who has a
budget wants to purchase a product on the Web and
knows of a price comparison Web site (e.g., as in
the hotel illustration above). If blindly purchasing a
product costs a certain expected amount X, but after
visiting the price comparison Web site the man will be
able to find a less expensive product Y, then the net
value of that knowledge will be X — Y — C, where C is
some measure of the cost of gaining the knowledge. If
the analysis in the hotel price illustration above were
correct, then the expected price of a hotel (without
knowledge) would have been about $86 (sce the ap-
pendix), but after locking at a Web site, the price
would have been $66, and the time cost would be
approximately 13 min/60 min x $10/hr=$2, so the
value of the Web site knowledge would be $86 —
$66 — $2=$18. In simple cases such as these, one
may imagine that a person could completely con-
struct a decision model in which all possible decision
outcomes are specified, as well as the rclationships
among information sources, potential results from
those sources, and the relation of information results
gathered to decisions and the utility of those decisions.
Indeed, artificial intelligence systems (e.g., Grass &
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Zilberstein, 2000) have been developed to use this
approach to tackle problems such as purchasing a
digital camera, purchasing a removable media device,
or choosing a restaurant. Real-world problems, how-
ever, typically require a more complicated analysis of
the value of knowledge.

Knowledge and Intelligence

Knowledge is of two kinds: we know a subject ourselves,
or we know where we can find information upon it.
— Samuel Johnson

Physically instantiated cognitive systems are limited in
their ability to behave as rational knowledge-level sys-
tems. Newell (1990) proposed that “intelligence is the
ability to bring to bear all the knowledge that one has in
service of one’s goals” (p. 90)."! This corresponds to
our everyday notion that we can behave more intelli-
gently by being better informed. In the idealized view
of the knowledge level, everything in a body of
knowledge (including all possible entailments) is in-
stantly accessible. However, people, or any physical
system, can only approximate such perfect intelligent
use of knowledge because the ability to bring forth the
right knowledge at the right time is physically limited.
The laws of physics limit the amount of information
that can be stored or processed in a circumscribed
portion of space and time. Within those limits, how-
ever, intelligence increases with the ability to bring to
bear the right knowledge at the right time.

Dennett (1991, pp. 222-223) notes that this con-
ception of knowledge and intelligent reasoning goes
back to Plato (Theaetetus, 197-198a, Cornford
translation). Plato saw knowledge as something that
one could possess like a man who keeps captured
wild birds in an aviary. There is a sense in which the
man has the birds, but a sense in which he has none
of them until he can control each bird by calling
forth the bird at will. Plato saw intelligent reasoning
as not only having the birds but also having the
control to bring forth the right bird at the right time.

Newell’s discussions focused on unaided intelli-
gent systems (people or computer programs) and the
knowledge that they had available in their local
memories. But there is a sense in which the world
around us provides a vast external memory teeming
with knowledge that can be brought forth to remedy a
lack on the part of the individual. We can extend
Newell’s notion of intelligence and argue that intel-
ligence is improved by enhancement of our ability to

bring forth the right knowledge at the right time from
the external world. Of course, the world (both phys-
ical and virtual) shapes the manner in which we can
access and transform knowledge-bearing content and
thus shapes the degree to which we reason and be-
have intelligently. The task of acquiring knowledge
from external sources is itself a task that can be per-
formed more or less intelligently.

Consider the illustration above in which a hypo-
thetical user scarches for hotel prices on the Web.
From a knowledge-level perspective, the user has
knowledge of how to navigate the Web, operate the
Web site search engine, and perform price compari-
sons. The illustration assumed that the user applies
this knowledge flawlessly, but the structure of the
Web environment determines the rate at which new
knowledge (of hotel prices) is gained. A different de-
sign could improve the rate at which the user accom-
plishes the task. For instance, if the Web site sorted
hotels by both quality (star rating) and price, the user
could accomplish the task much faster. Although the
user’s navigation and calculation knowledge has not
changed, it is being applied more cfficiently because of
a change in the information environment. In other
words, a change in the information environment has
made the user more intelligent.

Rational Analysis

Anderson’s rational analysis approach is a specific
version of methodological adaptationism applied to
the development of cognitive theory. It was inspired
by Marr’s (1982) influential approach to computer
vision, in which Marr argued that visual processing
algorithms (and other intelligent information pro-
cesses) are “likely understood more readily by un-
derstanding the nature of the problem being solved
than by examining the mechanism (and the hard-
ware) in which it is solved” (p. 92).!? The term “ra-
tional analysis” was inspired by rational choice theory
in economics, in which people are assumed to be
rational decision makers who optimize their behav-
ioral choices in order to maximize their goals (utility).
In rational analysis, however, it is not the person who
is the agent of rational choice, but rather it is the
selective forces of the environment that choose better
biological and behavioral designs.

Anderson has used rational analysis to study the
human cognitive architecture by assuming that nat-
ural information processing mechanisms involved in
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such functions as memory (Anderson & Milson,
1989; Anderson & Schooler, 1991) and categoriza-
tion (Anderson, 1991) were well designed by evolu-
tionary forces to meet the problems posed by the
environment. The key assumption behind rational
analysis could be stated as

Principle of rationality: The cognitive system op-
timizes the adaptation of the behavior of the or-
ganism.

As developed by Anderson (1990), rational analysis
requires a focus on understanding the structure and
dynamics of the environment. This understanding
provides a rationale for the design of information
processing mechanisms. Anderson proposed the fol-
lowing recipe for rational analysis:

1. Precisely specify the goals of the agent.

2. Develop a formal model of the environment to
which the agent is adapted.

3. Make minimal assumptions about the compu-
tational costs.

4. Derive the optimal behavior of the agent

considering items 1-3.
. Test the optimality predictions against data.
6. lterate.

vV

Note, generally, the emphasized focus on optimal
behavior under given goals and environmental con-
straints and the minimal assumptions about the
computational structure that might produce such
behavior.

Probabilistically Textured Environments

Interaction with the information environment differs
in a fundamental way from well-defined task envi-
ronments that have been the dominant paradigms in
HCI, such as expert text editing (Card et al., 1983) or
telephone assistance (Gray et al., 1993). In contrast to
such tasks—in all but the most trivial cases—the in-
formation forager must deal with a probabilistically
textured information environment (Brunswik, 1952).
In contrast to application programs such as text editors
and spreadsheets, in which actions have fairly deter-
minate outcomes,'’ foraging through a large volume
of information involves uncertainties— for a variety of
rcasons—about the location, quality, relevance, ve-
racity, and so on, of the information sought and the
cffects of foraging actions. The ccological rationality
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of information foraging behavior must be analyzed
through the theoretical lens and tools appropriate to
decision making under uncertainty. The determinate
formalisms and determinate cognitive mechanisms
that are characteristic of the HCI paradigm are inad-
equate for the job of theorizing about information
foraging in probabilistically textured environments.
Models developed in Information Foraging Theory
draw upon probabilistic models, and especially
Bayesian approaches, and they bear similarity to eco-
nomic models of decision making (rational choice)
under uncertainty and engineering models.

Role of Optimization Analysis

Optimization models'* are a powerful tool for study-
ing the design features of organisms and artifacts.
Consequently, optimization models are often found
in the toolbox of the mecthodological adaptationist
(e.g., as found in Anderson’s rational analyscs). Op-
timization models are mathematical models bor-
rowed from engineering and cconomics. They are
used to model a rational decision process faced with a
problem and constraints. In engincering, they are
used as a tool for quantifying the quality of design
alternatives with respect to some problem specifica-
tion. In economics, they are used typically to char-
acterize a rational decision maker choosing among
courses of action in order to maximize utility (a ra-
tional choice model), often operating in situations of
limited or uncertain knowledge about possible out-
comes. Optimization models in general include the
following three major components:

* Decision assumptions that specify the decision
problem to be analyzed, such as the amount of
time to spend on an activity, or whether or not to
pursue a particular type of information content.

* Currency assumptions, which identify how choices
are to be evaluated, such as time or money or
other resources.
Constraint assumptions, which limit and define
the relationships among decision and currency
variables. Examples of constraints include the rate
at which a person can navigate through an infor-
mation access interface, or the value of results
returned by bibliographic search technology.

All cognitive agents must reason about the world with
limited time, knowledge, and computational power.
Consequently, the use of optimization models can-
not be taken as a hypothesis that human behavior is
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omnisciently rational, with perfect information and
infinite computational resources. Indeed, unbounded
optimization models are likely to fail in predicting
any complex behavior. Anderson’s (1990) rational anal-
ysis approach is based on optimization under con-
straints. The basic idea is that the constraints of the
environment place important shaping limits on the
optimization that is possible.

Optimization models, such as rational choice
models from economics, allow us to define the be-
havioral problems that are posed by the environment,
and they allow us to determine how well humans (or
animals or other cognitive agents) perform on those
problems. This does not mean that one assumes that
the cognitive agent is performing the same calcula-
tions as the optimization models. It is possible that
simple mechanisms and heuristics may achieve op-
timal or near optimal performance once the limits of
the environment are taken into account (Todd &
Gigerenzer, 2000). This is the essence of bounded
rationality and the notion that real cognitive agents
make choices based on satisficing (Simon, 1955).

Generally, “One does not treat the optimization
principle as a formula to be applied blindly to any
arbitrarily selected atiribute of an organism. It is nor-
mally brought in as a way of expanding our under-
standing from an often considerable base of knowl-
edge” (Williams, 1992, p. 62). As eloquently stated by
the evolutionary theorist G. C. Williams (1992),

Organisms are never optimally designed. Designs
of organs, developmental programs, ctc. are lega-
cies from the past and natural selection can affect
them in only two ways. It can adjust the numbers
of mutually exclusive designs until they reach
frequency-dependent equilibria, often with only
one design that excludes alternatives. It can also
optimize a design’s parameters so as to maximize
the fitness attainable with that design under cur-
rent conditions. This is what is usually meant by
optimization in biology. An analogy might be the
common wooden-handled, steel-bladed tool de-
sign. With different parameter values it could be
a knife, a screw driver, or many other kids of tool —
many, but not all. The fixed-blade constraint
would rule out turning it into a drill with meshing
gears. The wood-and-steel constraint would rule it
out as a hand lens. (p. 56, emphasis original)

Activities can be analyzed according to the value
of the resource currency returned and costs incurred.
Generally, one considers two types of costs: (1) re-

source costs and (2) opportunity costs (Hames, 1992).
Resource costs are the expenditures of calories, money,
and so forth, that are incurred by the chosen activity.
Opportunity costs are the benefits that could be
gained by engaging in other activities but are for-
feited by engaging in the chosen activity. For in-
stance, junk mail incurs a resource cost in terms of
the amount of money (not to mention trees) involved
in delivering the junk, but it also incurs an oppor-
tunity cost for the recipients who read the junk be-
cause they have forgone gains that could have been
made by engaging in other activities.

Production System Theories of Cognition

Production systems have had a successful history in
psychology (Anderson et al., 2004; Neches, Langley,
& Klahr, 1987) since their introduction into the field
by Newell (1973a). The ACT family of production
system theories has the longest history of these kinds of
cognitive architectures. The seminal version of the
ACT theory was presented in Anderson (1976), shortly
after Newell’s (1973b) challenge to the ficld of cogni-
tive psychology to build unificd theories of cognition,
and it has undergone several major revisions since
then (Anderson, 1976, 1983, 1990, 1993; Anderson
etal.,, 2004; Anderson & Lebiere, 1998). Until recently,
it has been primarily a theory of higher cognition and
learning, without the kind of emphasis on perceptual-
motor processing found in EPIC (Kicras & Meyer,
1997) or MHP (Card et al., 1983). The success of ACT
as a cognitive theory has been historically in the study
of memory (Anderson & Milson, 1989; Anderson &
Pirolli, 1984), language (Anderson, 1976), problem
solving (Anderson, 1993), and categorization (Ander-
son, 1991). As a leaming theory, ACT has been suc-
cessful (Anderson, 1993) in modeling the acquisition
of complex cognitive skills for tasks such as computer
programming, geometry, and algebra and in under-
standing transfer of learning across tasks (Singley &
Anderson, 1989). ACT has been strongly tested (An-
derson, Boyle, Corbett, & Lewis, 1990) by application
in the development of computer tutors, and less so in
the area of HCI. The production system models pre-
sented in this book are extensions of the ACT theory.

Figure 1.7 presents the basic cognitive architec-
ture used in this book. It couples the basic ACT-R
architecture to a module that computes information
scent (a kind of utility metric), which for convenience I
will call the ACT-Scent'® architecture. This book
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FIGURE 1.7 The ACT-Scent cognitive architecture.
Information perceived from the external world is
encoded into chunks in declarative memory. Goals
and subgoals controlling the flow of cognitive behav-
ior are stored in goal memory. The system matches
production rules in production memory against goals
and activated information in declarative memory, and
those that match form a conflict set. The matched
rule instantiations in the conflict set are evaluated by
utility computations performed in the information
scent module. Based on the utility evaluation, a single
production rule instantiation is exccuted, updates are
made to goal memory and declarative memory, if
necessaty, and the cycle begins again. ACT-Scent uses
a process called spreading activation to retrieve
information (in declarative memory) and to evaluate
productions (in the information scent module).

presents specific models of Web foraging (SNIF-ACT
1.0 and SNIF-ACT 2.0) and Scatter/Gather (Cutting,
Karger, Pedersen, & Tukey, 1992) browsing (ACT-IF)
that were developed within the ACT-Scent architec-
ture. The architecture includes a declarative memory
containing chunks, a procedural memory containing
production rules, and a goal stack containing the hier-
archy of intentions driving behavior. The information
scent module is 2 new addition to ACT that is used to
compute the utility of actions based on an analysis of
the relationship of content cues from the user interface
to the user’s goals. The theory behind this module is
described in detail in chapter 4.

Summary

Humans are informavores. We adapt to the world by
seeking and using information. As a result, we create
a glut of information. This causes a poverty of at-
tention and a greater need to allocate that attention
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effectively and efficiently. Information Foraging The-
ory is being developed to understand and jmprove
human-information interaction. It borrows from op-
timal foraging theory, but it assumes that humans
optimize the gain of information per unit time cost.
The following chapters deal with various applications
of the framework, method, and theory. This includes
analyses of information foraging on the Web, in
document browsers, and in social networks. In addi-
tion, I discuss design and engineering applications of
the theory that illustrate its practical utility.

APPENDIX

The analysis presented in this section is provided for
those readers with a background that includes exposure
to basic probability theory and who are interested in the
mathematics involved in calculating the expected value
of searching for better hotel prices in the illustration.

The observed frequency distribution of Paris two-
star hotel prices presented in figure 1.2 is presented
in figure 1.A.1. Also shown in figure 1.A.1 is a best-fit
lognormal distribution, which is typically found for
commodity prices and would probably be character-
istic of many of the things that one could buy on the
Web. The estimate was performed by starting with
the maximum likelihood estimates, whichcanbe biased
for small samples, and then adjusting the parameters
slightly to obtain best linear fits on a Q-Q plot.

A variable X (e.g., prices) is lognormal distributed
if the natural log of X, In(X), is normal distributed.
The probability density function of the lognormal
distribution is

Flx) = —1 () -2 (LA

x6v/2n

where p is the mean of In(X) and ¢ is the standard
deviation of In(X). For the prices in figure 1.A.1,
u=445 and ¢=0.13. The cumulative distribution
function, F(x), for the lognormal is typically com-
puted numerically using the cumulative distribution
function @ for the normal distribution,

F(x)=® (h’(i“—”) (1A2)

[

The expected value of a lognormal distributed vari-
able X is

E(X)=etto/2, (1.A.3)
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FIGURE }.A.1 The observed distribution of Paris two-
star hotel prices is approximately lognormal, which is
typical of commodity prices.

and the variance is

var(X) = (e — 1)e#+7" (1.A4)

‘The distribution in figure 1.A.1 has an expected value
of $86.35 and a variance of $127.09.

The expected minimum price in figure 1.3 and
expected savings in figure 1.4 were computed from
the probability density function of minimum values.
Assume that prices are sampled n times from a ran-
dom variable, such as X characterized above. The
minimum value of that sample of size n can be
characterized as another random variable Y,,,

Y, = min{X,Xs, ..., Xu}, (1.A.5)

where the X; are independent random draws from
the random variable X. From the basic definitions of
probability, the cumulative density function for the
minimum of a random sample of size n, Y,,, is defined as
the probability that a randomly sampled value (mini-
mum prices in this case) will be less than some value y,

Gu(y)= Pr(Y, <y), (1.A.6)
which is equivalent to the probability that the mini-

mum Y, is not greater than y,

Gul(y)=1—- Pr(Y, >y). (1A.7)

The probability, Pr(Y,, > y), that the minimum value
of a sample is greater than some value y would be the

same as the probability that every sampled value from
the random variable X was greater than y, so

Pr(Y, >y)=Pr(X; > y)- Pr(X; >y) - -
Pr(X, >y)
= Pr(X > y)".

(1.A.8)

Since the meaning of the cumulative density func-
tion for X is
Fix)=Pr(X <), (1.A.9)
one can define
PrX >y)=1-F(y). (1.A.10)

Now, one can substitute cquation 1.A.10 into 1.A.8
into 1.A.7 to get

Cn ()’) =Pr (Yn < )’)

=1-Pr(Y, >y)

(1.A.11)
=]1-PrX >y
=1-[1-Fp)"

The probability density function is defined as the
derivative of the cumulative density function. So,
taking the derivative of equation 1.A.1l, the pro-
bability density function of the random variable Y,
representing the minimum of a sample of size n
drawn from variable X will be

gn(y)=n[1=F0]" " 'f(y),

where the probability density function f(x) and cu-
mulative density function F(x) are for the sampled

(1.A.12)

random variable X. The cxpected minimum prices
and expected savings in figures 1.3 and 1.4 were
computed using equation 1.A5 assuming the
probability density function and cumulative distri-
bution function in equations 1.A.1 and 1.A.2, with
the parameters p=4.45 and ¢=0.13 estimated in
fitting the lognormal in figure 1.A1.

The utility of production “P3: Next-link” in table
1.1 was computed by determining the expected sav-
ings that would be attained by randomly sampling the
lognormal distribution of prices in figure 1.A.1 while
having a minimum price m already in hand. This
expected savings can be computed by integrating over
all savings achieved by prices less than m and greater
than 0, weighted by the probability of getting those
lower prices. So the expected savings to be achieved
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by a randomly sampled price x given that one has a
current minimurm price m in hand is

S(m) =/0m(m—x) f(x)dx. (1.A.13)

Given the lognormal distribution of prices in figure
LA.1, if the lowest price found so far were $100, then
the expected savings of taking looking at the next
price would be

S($100)=$14.43.
Some other example expected savings would be

S($90) = $6.62
S($80) = $1.86
S($70) =$0.23

Notes

1. http/Awww-2.cs.cmu.edu/~hzhang/Newell. Good
Science.

2. This example is inspired by a microeconomic
analysis of the value of information in consumer pur-
chasing by Stigler (1961).

3. For early uses of production systems in psychol-
ogy, sce Newell (1973a) and Newell and Simon (1972).
For overviews and history of their use in psychology, see
Anderson (1993), and Klahr, Langley, and Neches (1987).

4. For those familiar with ACT-R 5.0, the produc-
tions run without the perceptual-motor modules or the
subsymbolic computations.

5. Data provided courtesy of Suresh Bhavnani.

6. 1 purposely use the phrase “maximization ten-
dency” because of the assumption that this is an ongoing
process limited by physical and biological bounds on
instantaneously achieving omniscient optimality. It is a
bounded rationality process.

7. The implicit assumption is that energy translates
into fitness.

8. As far as I can tell, the term “human-information
interaction” first appeared in the public literature in the
title of Gershon (1995).

9. To clarify terminology, what 1 am calling “knowl-
edge” corresponds to Newell’s (e.g., 1982, 1990) use of the
term. This, in tum, corresponds to Dennett’susc of “belief,”
which is consistent with common philosophical usage.

10. This definition is based on Pearl (1988, pp. 313~
314).
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11. Newell’s technical definition was that “[a] sys-
tem is intelligent to the degree that it approximates a
knowledge-level system” (Newell, 1990). Knowledge-
level systems are discussed below.

12. See Glimcher (2003) for how Marr’s work in-
spired a parallel rational analysis approach to under-
standing neuroscience.

13. Barring bugs, of course.

14. Following natural selection theorist G. C. Wil-
liams (1992), 1 prefer the term “optimization model”
over “optimality model” to acknowledge a focus on cor-
rective processes rather than optimal end states.

15. Pronounced “accent.”
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